Results of ADS Communications Testing

Oceans 96 IEEE/MTS

24 September 1996

Lt. Gregory W. Johnson David Pietraszewski USCG R&D Center, Groton CT

Vessel Traffic Service

🖈 Mission

 "...to maximize the safe and efficient use of waterways through the power of information."

Current Operations

- O Radar Based
- Voice
 - used to determine identity of radar contacts.
- VTS Upgrade
 - ► UNIX (UB) based.
 - Digitized radar overlay on electronic chart.

ADS

Automated Dependent Surveillance

Automated

 Does not rely upon vessel operator; equipment onboard determines and transmits data without human involvement.

O Dependent

 The system requires that each participating vessel have ADS equipment installed (or carried onboard).

○ Surveillance

 Data provided by all participating vessels is used to monitor the course, speed, and position of each vessel in relation to each other and hazards to navigation.

- Narragansett Bay, RI 1994
 NY Harbor, NY 1995
 3 Communications Methods
 AMPS Cellular
 Coastal, commercial dial-up access.
 VHF-FM DSC
 Coastal, VHF-FM polling.
 Newcomb Satellite
 - ➤ CONUS, real-time satellite link.

USCGC Towline, Bristol RI

 Advanced Mobile Phone Service (analog cellular)
 30–45 seconds connect time
 virtual circuit (low latency)
 5 second report interval
 93+ hours of testing
 53,000+ reports
 ~79% of packets successfully rcvd

Cellular Reliability/Integrity

4755 0

		Raw	Good	% Data			Missed Report Intervals		
Date	Hours	Reports	Reports	Error	Missed	Success %	Max	Mean	Std Dev.
29-Aug	4.23	2,836	2,835	0.04%	192	93.66%	332	32.58	60.27
30-Aug	4.10	2436	2,435	0.04%	270	90.02%	748	47.00	129.33
31-Aug	3.86	2,423	2,422	0.04%	342	87.63%	547	63.33	121.52
11-Sep	2.54	1,468	1,323	9.88%	400	76.78%	334	16.39	34.66
15-Sep	8.80	4,887	4,419	9.58%	1884	70.11%	768	21.03	53.15
16-Sep	7.60	4,057	3,645	10.16%	1072	77.27%	420	16.55	1.33
20-Sep	6.52	3,727	3,282	11.94%	1384	70.34%	427	16.64	30.57
28-Sep	3.77	2,251	2,028	9.91%	668	75.22%	377	16.50	30.23
29-Sep	7.56	4,267	3,809	10.73%	1613	70.25%	344	16.97	27.59
7-Oct	3.52	2,193	1,965	10.40%	556	77.95%	240	14.86	22.10
8-Oct	3.51	2,268	2,053	9.48%	453	81.92%	280	14.15	23.79
12-Oct	4.04	2,473	2,219	10.27%	680	76.54%	227	16.14	23.62
14-Oct	5.33	6,457	3,071	52.44%	748	80.41%	370	16.06	31.74
22-Oct	3.61	2,290	2,034	11.18%	541	78.99%	435	14.58	29.79
Overall	68.99	44,033	37,540	14.75%	10,803	77.65%			

Cellular Conclusions

☆ Negative ○ High cost • High complexity Reliability problems ○ Capacity problems ☆ Positive Largest information bandwidth ○ Low latency Fastest reporting interval

Digital Selective Calling
 VHF-FM (Ch 70 - 156.525 MHz)
 4-5 second latency
 30 second report interval
 Over 99 hours of testing
 12,000+ reports

○ ~92% success

DSC Coverage Picture

DSC Reliability

		Total	% Incomplete		SNR		
Date	Hours	Reports	Reports	Success %	MIN	MAX	
25-Aug	4.09	351	0.00%	75.16%	8	46	
26-Aug	4.49	510	0.58%	90.11%	18	47	
31-Aug	3.85	429	0.46%	92.46%	22	47	
15-Sep	3.01	333	9.51%	91.99%	19	32	
16-Sep	8.71	845	10.77%	91.55%	15	47	
20-Sep	6.38	661	10.80%	87.90%	21	47	
27-Sep	5.68	649	8.85%	95.30%	19	23	
28-Sep	3.58	413	9.43%	96.05%	18	47	
29-Sep	5.66	741	15.12%	91.94%	17	47	
7-Oct	4.01	452	15.20%	93.58%	15	47	
13-Oct	5.28	619	13.55%	98.10%	17	47	
13-Dec	5.52	565	11.86%	89.68%	13	25	
Overall	99.06	10,834	7.43%	91.75%	8	47	

☆ Working Channel (83A)

- Reduced poll response time.
- Variable report intervals.
- Initial calls made on Ch70 then switched to Ch83A.

 Periodic All-Ships calls on Ch70 to automatically acquire new arrivals.

DSC Conclusions

☆ Negative

- Shore-side infrastructure needed
- Cost is dependent upon traffic density and location
- Capacity problems
- ☆ Positive
 - High reliability
 - Capacity can be increased
 - Low latency*
 - International acceptance

Newcomb Satellite

Developed under SBIR Contract

- L-Band (1610–1626.5 MHz) Spread Spectrum Satellite System
- 1–2 second latency
- 10 second reporting interval
- 95+ hours of data
- ~ 96% of packets successfully received

Newcomb Coverage Picture

Newcomb Reliability

					Missed Report Intervals			
Date	Hours	Reports	Success %	Max	Mean	Std Dev.	# Intervals	Misses
25-Aug	5.24	1,715	95.92%	8	1.35	1.20	55	87.27%
26-Aug	4.36	1,357	96.86%	4	1.42	0.83	31	74.19%
30-Aug	5.69	1,867	98.31%	2	1.14	0.35	28	85.71%
7-Sep	4.01	1,268	94.70%	16	2.03	2.72	35	62.86%
11-Sep	2.33	751	97.03%	3	1.15	0.48	20	90.00%
15-Sep	8.38	2,658	95.58%	6	1.41	0.87	87	74.71%
16-Sep	6.32	2,023	98.25%	3	1.13	0.42	32	90.63%
20-Sep	6.87	2,076	96.69%	9	1.54	1.44	46	76.09%
29-Sep	6.65	2,120	95.24%	13	1.71	2.19	62	77.42%
8-Oct	3.89	1,204	93.19%	24	2.38	3.95	37	67.57%
14-Oct	5.33	1,704	98.16%	3	1.28	0.53	25	76.00%
13-Dec	3.85	1,236	96.79%	9	1.37	1.45	30	86.67%
Overall	95.21	30,326	96.35%	24	1.51	1.73	761	78.71%

Newcomb Reliability

Newcomb Conclusions

☆ Negative ○ Per packet cost ○ Frequency allocation issues ☆ Positive ○ Low latency ○ High reliability / secure Easily installed / no infrastructure Large coverage area ○ High capacity

Voiceless VTS

🖈 Concept

- VTS information should be automatically transferred between the VTS computers and the ships computer systems.
- ADS is the transponder element of voiceless VTS.

Marine Piloting w/ECS ELECTRONIC CHART SYSTEM SHIPBOARD **SENSORS** PILOT **VOICE COMMUNICATIONS** DGPS Weather RADAR visual AtoN Acoustic etc. CAYES CO

○ works well o valuable addition to VTS Benefits of Voiceless VTS Digital broadcasts as primary info source reduction in VTS operator workload improved VTS info quality o automated VTS info transfer ○ timely digital access to VTS info

For further information:

- o http://comms.rdc.uscg.mil/
- o http://www.rdc.uscg.mil/
- gjohnson@gamma.rdc.uscg.mil
- dski@radioaids.rdc.uscg.mil

